An Introduction to the Amplifier
Not all amplifiers are the same and are therefore
classified according to their circuit configurations and methods of
operation. In “Electronics”, small signal amplifiers are commonly used
devices as they have the ability to amplify a relatively small input
signal, for example from a Sensor such as a photo-device, into a much larger output signal to drive a relay, lamp or loudspeaker for example.
There are many forms of electronic circuits classed as amplifiers,
from Operational Amplifiers and Small Signal Amplifiers up to Large
Signal and Power Amplifiers. The classification of an amplifier depends
upon the size of the signal, large or small, its physical configuration
and how it processes the input signal, that is the relationship between
input signal and current flowing in the load.The type or classification of an amplifier is given in the following table.
Classification of Amplifiers
Type of Signal | Type of Configuration |
Classification | Frequency of Operation |
Small Signal | Common Emitter | Class A Amplifier | Direct Current (DC) |
Large Signal | Common Base | Class B Amplifier | Audio Frequencies (AF) |
Common Collector | Class AB Amplifier | Radio Frequencies (RF) | |
Class C Amplifier | VHF, UHF and SHF Frequencies |
Generally, an ideal signal amplifier has three main properties, Input Resistance or ( Rin ), Output Resistance or ( Rout ) and of course amplification known commonly as Gain or ( A ). No matter how complicated an amplifier circuit is, a general amplifier model can still be used to show the relationship of these three properties.
Ideal Amplifier Model
Amplifier gain is simply the ratio of the output divided-by the input. Gain has no units as its a ratio, but in Electronics it is commonly given the symbol “A”, for Amplification. Then the gain of an amplifier is simply calculated as the “output signal divided by the input signal”.
Amplifier Gain
The introduction to the amplifier gain can be said to be the relationship that exists between the signal measured at the output with the signal measured at the input. There are three different kinds of amplifier gain which can be measured and these are: Voltage Gain ( Av ), Current Gain ( Ai ) and Power Gain ( Ap ) depending upon the quantity being measured with examples of these different types of gains are given below.Amplifier Gain of the Input Signal
Voltage Amplifier Gain
Current Amplifier Gain
Power Amplifier Gain
The power Gain or power level of the amplifier can also be expressed in Decibels, (dB). The Bel (B) is a logarithmic unit (base 10) of measurement that has no units. Since the Bel is too large a unit of measure, it is prefixed with deci making it Decibels instead with one decibel being one tenth (1/10th) of a Bel. To calculate the gain of the amplifier in Decibels or dB, we can use the following expressions.
- Voltage Gain in dB: av = 20 log Av
- Current Gain in dB: ai = 20 log Ai
- Power Gain in dB: ap = 10 log Ap
Also, a positive value of dB represents a Gain and a negative value of dB represents a Loss within the amplifier. For example, an amplifier gain of +3dB indicates that the amplifiers output signal has “doubled”, (x2) while an amplifier gain of -3dB indicates that the signal has “halved”, (x0.5) or in other words a loss.
The -3dB point of an amplifier is called the half-power point which is -3dB down from maximum, taking 0dB as the maximum output value.
Example No1
Determine the Voltage, Current and Power Gain of an amplifier that has an input signal of 1mA at 10mV and a corresponding output signal of 10mA at 1V. Also, express all three gains in decibels, (dB).
The Various Amplifier Gains:
Also in Decibels (dB):
Generally, amplifiers can be sub-divided into two distinct types depending upon their power or voltage gain. One type is called the Small Signal Amplifier which include pre-amplifiers, instrumentation amplifiers etc. Small signal amplifies are designed to amplify very small signal voltage levels of only a few micro-volts (μV) from sensors or audio signals.
The other type are called Large Signal Amplifiers such as audio power amplifiers or power switching amplifiers. Large signal amplifiers are designed to amplify large input voltage signals or switch heavy load currents as you would find driving loudspeakers.
Power Amplifiers
The Small Signal Amplifier is generally referred to as a “Voltage” amplifier because they usually convert a small input voltage into a much larger output voltage. Sometimes an amplifier circuit is required to drive a motor or feed a loudspeaker and for these types of applications where high switching currents are needed Power Amplifiers are required.As their name suggests, the main job of a “Power Amplifier” (also known as a large signal amplifier), is to deliver power to the load, and as we know from above, is the product of the voltage and current applied to the load with the output signal power being greater than the input signal power. In other words, a power amplifier amplifies the power of the input signal which is why these types of amplifier circuits are used in audio amplifier output stages to drive loudspeakers.
The power amplifier works on the basic principle of converting the DC power drawn from the power supply into an AC voltage signal delivered to the load. Although the amplification is high the efficiency of the conversion from the DC power supply input to the AC voltage signal output is usually poor.
The perfect or ideal amplifier would give us an efficiency rating of 100% or at least the power “IN” would be equal to the power “OUT”. However, in reality this can never happen as some of the power is lost in the form of heat and also, the amplifier itself consumes power during the amplification process. Then the efficiency of an amplifier is given as:
Amplifier Efficiency
Ideal Amplifier
We can know specify the characteristics for an ideal amplifier from our discussion above with regards to its Gain, meaning voltage gain:- The amplifiers gain, ( A ) should remain constant for varying values of input signal.
- Gain is not be affected by frequency. Signals of all frequencies must be amplified by exactly the same amount.
- The amplifiers gain must not add noise to the output signal. It should remove any noise that is already exists in the input signal.
- The amplifiers gain should not be affected by changes in temperature giving good temperature stability.
- The gain of the amplifier must remain stable over long periods of time.
Amplifier Classes
The classification of an amplifier as either a voltage or a power amplifier is made by comparing the characteristics of the input and output signals by measuring the amount of time in relation to the input signal that the current flows in the output circuit. We saw in the Common Emitter transistor tutorial that for the transistor to operate within its “Active Region” some form of “Base Biasing” was required. This small Base Bias voltage added to the input signal allowed the transistor to reproduce the full input waveform at its output with no loss of signal.Audio power amplifiers are classified in an alphabetical order according to their circuit configurations and mode of operation. Amplifiers are designated by different classes of operation such as class “A”, class “B”, class “C”, class “AB”, etc. These different Amplifier Classes range from a near linear output but with low efficiency to a non-linear output but with a high efficiency.
No one class of operation is “better” or “worse” than any other class with the type of operation being determined by the use of the amplifying circuit. There are typical maximum efficiencies for the various types or class of amplifier, with the most commonly used being:
- • Class A Amplifier – has low efficiency of less than 40% but good signal reproduction and linearity.
- • Class B Amplifier – is twice as efficient as class A amplifiers with a maximum theoretical efficiency of about 70% because the amplifying device only conducts (and uses power) for half of the input signal.
- • Class AB Amplifier – has an efficiency rating between that of Class A and Class B but poorer signal reproduction than class A amplifiers.
- • Class C Amplifier – is the most inefficient amplifier class as only a very small portion of the input signal is amplified therefore the output signal bears very little resemblance to the input signal. Class C amplifiers have the worst signal reproduction.
Class A Amplifier Operation
Class A Amplifier operation is where the entire input signal waveform is faithfully reproduced at the amplifiers output as the transistor is perfectly biased within its active region, thereby never reaching either of its Cut-off or Saturation regions. This then results in the AC input signal being perfectly “centred” between the amplifiers upper and lower signal limits as shown below.Class A Output Waveform
Generally, the output transistor of a Class A amplifier gets very hot even when there is no input signal present so some form of heat sinking is required. The direct current flowing through the output transistor (Ic) when there is no output signal will be equal to the current flowing through the load. Then a Class A amplifier is very inefficient as most of the DC power is converted to heat.
Class B Amplifier Operation
Unlike the Class A amplifier mode of operation above that uses a single transistor for its output power stage, the Class B Amplifier uses two complimentary transistors (either an NPN and a PNP or a NMOS and a PMOS) for each half of the output waveform. One transistor conducts for one-half of the signal waveform while the other conducts for the other or opposite half of the signal waveform. This means that each transistor spends half of its time in the active region and half its time in the cut-off region thereby amplifying only 50% of the input signal.Class B operation has no direct DC bias voltage like the class A amplifier, but instead the transistor only conducts when the input signal is greater than the base-emitter voltage and for silicon devices is about 0.7v. Therefore, at zero input there is zero output. This then results in only half the input signal being presented at the amplifiers output giving a greater amount of amplifier efficiency as shown below.
Class B Output Waveform
Then the lower part of the output waveform which is below this 0.7v window will not be reproduced accurately resulting in a distorted area of the output waveform as one transistor turns “OFF” waiting for the other to turn back “ON”. The result is that there is a small part of the output waveform at the zero voltage cross over point which will be distorted. This type of distortion is called Crossover Distortion and is looked at later on in this section.
Class AB Amplifier Operation
The Class AB Amplifier is a compromise between the Class A and the Class B configurations above. While Class AB operation still uses two complementary transistors in its output stage a very small biasing voltage is applied to the Base of the transistor to bias it close to the Cut-off region when no input signal is present.An input signal will cause the transistor to operate as normal in its Active region thereby eliminating any crossover distortion which is present in class B configurations. A small Collector current will flow when there is no input signal but it is much less than that for the Class A amplifier configuration. This means then that the transistor will be “ON” for more than half a cycle of the waveform. This type of amplifier configuration improves both the efficiency and linearity of the amplifier circuit compared to a pure Class A configuration.
Class AB Output Waveform
Power Amplifier Classes
Class | A | B | C | AB |
Conduction Angle |
360o | 180o | Less than 90o | 180 to 360o |
Position of the Q-point |
Centre Point of the Load Line |
Exactly on the X-axis |
Below the X-axis |
In between the X-axis and the Centre Load Line |
Overall Efficiency |
Poor 25 to 30% |
Better 70 to 80% |
Higher than 80% |
Better than A but less than B 50 to 70% |
Signal Distortion |
None if Correctly Biased |
At the X-axis Crossover Point |
Large Amounts | Small Amounts |
So why use a Class A amplifier if its efficiency is less than 40% compared to a Class B amplifier that has a higher efficiency rating of over 70%. Basically, a Class A amplifier gives a much more linear output meaning that it has, Linearity over a larger frequency response even if it does consume large amounts of DC power.
In this Introduction to the Amplifier tutorial, we have seen that there are different types of amplifier circuit each with its own advantages and disadvantages. In the next tutorial about Amplifiers we will look at the most commonly connected type of transistor amplifier circuit, the Common Emitter Amplifier. Most transistor amplifiers are of the Common Emitter or CE type circuit due to their large gains in voltage, current and power as well as their excellent input/output characteristics.
0 comments:
Post a Comment